Math 4300
Homework \# 4
Solutions
(1) $A=(-1,-2), B=(2,1), C=(0,-1)$
(a) They don't lie on a vertical line. What about a line $L_{m, b}$?
Plug them into $y=m x+b$ to get:

$$
\begin{aligned}
-2 & =-m+b \\
1 & =2 m+b \\
-1 & =b
\end{aligned}
$$

(1) \leftarrow A plugged in
(2) \leftarrow B plugged in
(3) $\leftarrow C$ plugged in
$b=-1$ gives then $m=1$ in both (1) and (2).
Let's verify that all three points satisfy the equation $y=x-1$.

We have:

$$
\begin{aligned}
-2 & =-1-1 \\
1 & =2-1 \\
-1 & =0-1
\end{aligned}
$$

These thrice points all lie on $L_{m, b}=L_{1,-1}$. So they are collinear.

Method 1-by def
$(b)^{v}$ In the picture on the previous page we can guess that $A-C-B$ is true. Let's check:
(i) we have three distinct points V (ii) A, B, C are collinear

$$
\begin{array}{ll}
& (\text { iii }) \\
& d_{E}(A, C)+d_{E}(C, B) \\
= & \sqrt{(-1-0)^{2}+(-2+1)^{2}}+\sqrt{(0-2)^{2}+(-1-1)^{2}} \\
\begin{array}{ll}
A=(-1,-2) \\
B=(2,1) \\
C=(0,-1)
\end{array} & =\sqrt{2}+\sqrt{8}=\sqrt{2}(1+2)=3 \sqrt{2}
\end{array}
$$

And, $d_{E}(A, B)=\sqrt{(-1-2)^{2}+(-2-1)^{2}}$

$$
\begin{aligned}
& =\sqrt{9+9} \\
& =\sqrt{18}=3 \sqrt{2}
\end{aligned}
$$

So, $d_{\epsilon}(A, C)+d_{E}(C, B)=d_{E}(A, B)$.

By conditions $(i),(i i),(i i i)$ we have that $A-C-B$ is true.
By a later problem of this HW we cannot have also $A-B-C$ or $B-A-C$. Thus, only $A-C-B$ is true.
method 2
Note: There is another way to check condition (iii) above. By using the standard rules! The standard ruler on $L_{1,-1}$.
The standard roles is $f: L_{1,-1} \rightarrow \mathbb{R}$ where $f(x, y)=x \sqrt{1+1^{2}}=\sqrt{2} x$

Apply f to A, B, C to get

$$
\begin{aligned}
& f(A)=f(-1,-2)=-\sqrt{2} \\
& f(B)=f(2,1)=2 \sqrt{2} \\
& f(C)=f(0,-1)=0 \sqrt{2}=0
\end{aligned}
$$

Since $f(A)<f(c)<f(B)$ we have $A-C-B$ by a theorem from class.
(c) Since $A-C-B$, then by a theorem in class we also have $B-C-A$.
(2) $A=(1,2), B=(3,4), C=(4, \sqrt{19})$
(a) They aren't un a vertical line. Let's see if they me un some c_{r}. plug A, B into $(x-c)^{2}+y^{2}=r^{2}$ to get: (we unly need to first find $\overleftrightarrow{A B}$ and then check if C lies on it also)

$$
(1-c)^{2}+2^{2}=r^{2}
$$

(1) \leftarrow A plugged in

$$
(3-c)^{2}+4^{2}=r^{2}
$$

(2) \leftarrow Bplugged in

$$
\begin{align*}
& c^{2}-2 c+5=r^{2} \tag{1}\\
& c^{2}-6 c+25=r^{2} \tag{2}
\end{align*}
$$

(1)-(2) gives $4 c-20=0$. So, $c=5$.

Plugging $c=5$ into (1) gives $r=\sqrt{20}$
Now let's see if all three points satisfy $(x-5)^{2}+y^{2}=20$

$$
\begin{aligned}
& (1-5)^{2}+2^{2}=20 \\
& (3-5)^{2}+4^{2}=20 \\
& (4-5)^{2}+\sqrt{19}^{2}=20
\end{aligned}
$$

$$
\begin{aligned}
& A=(1,2) \\
& B=(3,4) \\
& C=(4, \sqrt{19})
\end{aligned}
$$

So, A, B, C all lie on $L_{\sqrt{20}}$
Note $\sqrt{20} \approx 4.47$ and $\sqrt{19} \approx 4.36$

Method 1-by def
(b) From the picture it looks like $A-B-C$. Let's verify.
(i) we have three distinct points
(ii) A, B, C are collinear

$$
\begin{aligned}
& \text { (iii) } d_{H}(A, B)+d_{H}(B, C) \\
& \begin{array}{l}
A=(1,2) \\
B=(3,4) \\
C=(4, \sqrt{19})
\end{array} \quad=\left|\ln \left(\frac{(1-5+\sqrt{20}) / 2}{(3-5+\sqrt{20}) / 4}\right)\right|+\left|\ln \left(\frac{(3-5+\sqrt{20}) / 4}{(4-5+\sqrt{20}) / \sqrt{19}}\right)\right| \\
& \text { recall: If } \\
& p=(x, y,) \\
& Q=\left(x_{2}, y_{2}\right) \\
& \text { are on } L_{r} \\
& d(P, Q)=\left|\ln \left(\frac{\left(x_{1}-c+r\right) / y_{1}}{\left(x_{2}-c+r\right) / y_{2}}\right)\right| \\
& \text { the negative signs are coming } \\
& \text { from dropping the abs value } \\
& \text { since the \# inside the abs } \\
& \text { value is negative } \\
& =\ln \left(\frac{(-2+\sqrt{20}) / 4}{(-4+\sqrt{20}) / 2}\right)+\ln \left(\frac{(-1+\sqrt{20}) / \sqrt{19}}{(-2+\sqrt{20}) / 4}\right) \\
& -\ln (c)=\ln \left(\frac{1}{c}\right) \\
& \ln (A)+\ln (B)=\ln (A B) \\
& \pm \underbrace{\ln \left(\frac{(-1+\sqrt{20}) / \sqrt{19}}{(-4+\sqrt{20}) / 2}\right)}_{\approx 0.963>0} \\
& =\left|\ln \left(\frac{(-1+\sqrt{20}) / \sqrt{19}}{(-4+\sqrt{20}) / 2}\right)\right| \\
& =\left|\ln \left(\frac{(4-5+\sqrt{20}) / 19}{(1-5+\sqrt{20}) / 2}\right)\right| \\
& \begin{array}{l}
\text { property of } \\
\text { distance functions }
\end{array} \quad=d_{H}(C, A)
\end{aligned}
$$

Thus, from $(i),(i i),(i i n)$ we see that $A-B-C$. From a hew problem is this topic we can't also have $A-C-B$ or $B-A-C$.
method 2- There is another way to check condition (iii). Use the standard ruler! The standard ruler on $L^{L_{2}}$ is given by $f:{ }_{5} L_{\sqrt{20}} \rightarrow \mathbb{R}$ where $f(x, y)=\ln \left(\frac{x-5+\sqrt{20}}{y}\right)$

We have

$$
\begin{aligned}
& f(A)=f(1,2)=\ln \left(\frac{1-5+\sqrt{20}}{2}\right) \approx-1.44 \\
& f(B)=f(3,4)=\ln \left(\frac{3-5+\sqrt{20}}{4}\right) \approx-0.48 \\
& f(C)=f(4, \sqrt{19})=\ln \left(\frac{4-5+\sqrt{20}}{\sqrt{19}}\right) \approx-0.227 \\
& \text { Since } f(C)<f(B)<f(A)
\end{aligned}
$$

We know $C-B-A$ or equivalently from a theorem from class
we have $A-B-C$.

(3) (a) All three points $A=(1,2), B=(1,4)$, and $C=(1,5)$ lie on L and so they are collinear.

(b) Let's check if $A-B-C, A-C-B$, or $B-A-C$.
You can use the def way of doing this like in the previous problems but this time let's use the easier standard ruler method (method 2 in the previous problems)
(i) A, B, C are distinct points (ii) A, B, C are collinear (iii) the standard ruler on L is given by $f(1, y)=\ln (y)$
We have

$$
\begin{aligned}
& f(A)=f(1,2)=\ln (2) \approx 0.693 \\
& f(B)=f(1,4)=\ln (4) \approx 1.386 \\
& f(c)=f(1,5)=\ln (5) \approx 1.609
\end{aligned}
$$

Since $f(A)<f(B)<f(C)$
we know $A-B-C$.

(4) Let A, B be points with $A \neq B$ in a metric geometry.
Let $C \in \overleftrightarrow{A B}$.
Let $f: \overleftrightarrow{A B} \rightarrow \mathbb{R}$ be a ruler for $\stackrel{\overleftrightarrow{A B}}{ }$. Since $A \neq B$ and f is a bijection we know that $f(A) \neq f(B)$.
Then there are several cases to consider:
(i) $f(A)<f(B)<f(c)$
(ii) $f(A)<f(c)<f(B)$
(iii) $f(A)=f(c)$
(iv) $f(B)<f(A)<f(c)$
(v) $f(B)<f(c)<f(A)$
(vi) $f(B)=f(c)$
(vii) $f(c)<f(A)<f(B)$
(viii) $f(c)<f(B)<f(A)$

If (i) is true then $A-B-C$.
If $(i i)$ is true then $A-C-B$
If (iii) is true then $A=C$.
If $(i s)$ is true then $B-A-C$ which implies that $C-A-B, 4$
If (v) is tree then $B-C-A$
Which implies that $A-C-B$.
If $(v i)$ is true then $B=C \in \begin{aligned} & \text { since } \\ & f \text { is } 1-1\end{aligned}$ $z-y-x$

If (vii) is true then $C-A-B$.
If (viii) is true then $C-B-A$,

which implies that $A-B-C$.
Thus summarizing either:

$$
C-A-B \text {, or } C=A \text {, or } A-C-B \text {, }
$$

or $C=B$, or $A-B-C$.
And no two of these can be true at the same time (by the above cases argument)
(5) Let l be a line and A, B, C be distinct points on l in a metric geometry.
So, $A \neq B, A \neq C$, and $B \neq C$.
We know $l=\overleftrightarrow{A B}$ since there is a unique line through any two distinct points.
By the previous HW problem we know that there are only three possible outcomes (since $C \neq A$ and $(\neq B)$

These are that either

$$
\begin{aligned}
& \text { These are that either } A-B-C \text {. } \\
& C-A-B \text {, or } A-C-B \text {, or } A-C \text {, }
\end{aligned}
$$

Since $C-A-B$ implies $B-A-C$, this gives that the only three possibilities are $B-A-C$, or $A-C-B$, or $A-B-C$.
(6) Suppose that $A-B-C$ and $B-C-D$ in some metric geometry.
Since $A-B-C$ we know A, B, C are distinct and collinear and all lie on $\stackrel{\rightharpoonup}{B C}$.

Since $B-C-D$ we know that B, C, D are all distinct and collinear and all lie on $\stackrel{\rightharpoonup}{B C}$.
Let $f: \overleftrightarrow{B C} \rightarrow \mathbb{R}$ be a ruler.
Since $A-B-C$ we know either
(i) $f(A)<f(B)<f(c)$
or (ii) $f(c)<f(B)<f(A)$.
Since $B-C-D$ we know either

$$
\begin{aligned}
\text { (iii) } f(B) & <f(C)<f(D) \\
\text { or }(\text { iv }) f(D) & <f(c)<f(B)
\end{aligned}
$$

case 1:
Suppose (i) $f(A)<f(B)<f(c)$ is true. Then, we can't have (iv) since then $f(c)<f(B)$. So we must have (iii), that is $f(B)<f(C)<f(D)$. Thus, $f(A)<f(B)<f(C)<f(0)$.

So, $A-B-D$ and $A-C-D$.

Case 2]:
Suppose (ii) $f(C)<f(B)<f(A)$ is true.
Then, we can't have (iii) since then $f(B)<f(c)$
So we must have (iv), that is $f(D)<f(c)<f(B)$.
Thus, $f(D)<f(c)<f(B)<f(A)$.
Hence, $D-B-A$ and $D-C-A$.
So, $A-B-D$ and $A-C-D$.
(7) Suppose $A-C-D$ and $A-C-B$ is some metric geometry. And that $D \neq B$.

Then, $A, B, C, D \in \stackrel{\rightharpoonup}{A C}$.
Let $l=\overleftrightarrow{A C}$ and $f: l \rightarrow \mathbb{R}$ be a ruler. Since $A-C-D$ we get either

$$
(i) f(A)<f(c)<f(D)
$$

$$
\text { or }(i i) f(D)<f(c)<f(A)
$$

$\operatorname{Case}(i)$: Suppose $f(A)<f(c)<f(D)$.
Since $A-C-B$ we have either

$$
\begin{aligned}
& f(A)<f(c)<f(B) \quad(*) \\
& \text { or } f(B)<f(c)<f(A) \quad(* x)
\end{aligned}
$$

But $(\not * *) \operatorname{con}^{\prime} t$ happen since we are assuming that $f(A)<f(C)$.
Thus we must have $(*)$.
Combining the case (i) conditions with ($*$)
we get either

$$
f(A)<f(C)<f(D)<f(B)
$$

or $f(A)<f(c)<f(B)<f(D)$.
In the first inequality we get $A-D-B$.
In the secund we get $A-B-D$.
So either $A-D-B$ or $A-B-D$.

Case (ii): Suppose $f(D)<f(c)<f(A)$.
Since $A-C-B$ we have either

$$
\begin{aligned}
& f(A)<f(c)<f(B) \quad(* * *) \\
& \text { or } f(B)<f(c)<f(A) \quad(* * * *)
\end{aligned}
$$

We see that $(* * *)$ can't happen because we are assuming that $f(c)<f(A)$. Thus we most have (*kkt)

Combining care (ii) with (*****) we get
that either

$$
\begin{aligned}
& f(0)<f(B)<f(C)<f(A) \\
& \text { or } f(B)<f(D)<f(C)<f(A) .
\end{aligned}
$$

Thus either $D-B-A$ or $B-D-A$. So either $A-B-D$ us $A-D-B$.
(8) Suppose $A-D-C$ and $A-C-B$.

Then A, B, C, D all lie on $l=\overrightarrow{A C}$.
Let $f: l \rightarrow \mathbb{R}$ be a ruler.
Since $A-D-C$ we have either
(i) $f(A)<f(D)<f(C)$
or $(i i) f(c)<f(D)<f(A)$
case (i): Suppose $f(A)<f(D)<f(c)$.
Since $A-C-B$ we have either

$$
\begin{aligned}
f(A) & <f(c)<f(B) \\
f(B) & <f(c)<f(A)
\end{aligned}
$$

We cant have $(* *)$ since we are assuming in this case that $f(A)<f(c)$.

Thus we have (x).

We get that case (i) and (*) give that $f(A)<f(D)<f(C)<f(B)$.

Thus, $A-D-B$.
Case (ii): Suppose $f(C)<f(D)<f(A)$.
Since $A-C-B$ we have either

$$
\begin{aligned}
& f(A)<f(c)<f(B) \quad(* * *) \\
& f(B)<f(c)<f(A) \quad(* * * *)
\end{aligned}
$$

We cant have $\left(*_{*} *\right)$ since we are assuming in this case that $f(c)<f(A)$.
Thus we have $\left(k_{*} * *\right)$.
We get that case (ii) and ($* * * *$) give
that $f(B)<f(C)<f(D)<f(A)$.
Thus, $B-D-A$.
So, $A-D-B$.
In either case we get $A-D-B$.
(9) Suppose that $A-Q-B, A-P-B$, and $P-C-Q$. Let $l=\overleftrightarrow{A B}$.
Since $A-Q-B$ and $A-P-B$ we know all of A, B, P, Q lie on l.
Let $f: l \rightarrow \mathbb{R}$ be a ruler for l.
Since $A-Q-B$ we get two cases:
either $f(A)<f(Q)<f(B)$ or $f(B)<f(Q)<f(A)$.
Ill prove this problem for when $f(A)<f(Q)<f(B)$, you try the other case.

Suppose $f(A)<f(Q)<f(B)$.
Since $A-P-B$ we have two cases.
case 1: Suppose $f(A)<f(P)<f(B)$. (1)
Since $P-C-Q$ we have either

$$
\begin{aligned}
& \text { ice } P-C-Q \text { we have either } f(c)<f(P) \text {. } \\
& \underbrace{f(P)<f(c)<f(Q)}_{(i)} \text { or } \underbrace{f(Q)<f(c)}_{(i i)}
\end{aligned}
$$

If (i), then

$$
f(A)<f(P)<f(C)<f(Q)<f(B)
$$

So, $A-C-B$.

If (ii), then

$$
f(A)<f(Q)<f(c)<f(P)<f(B)
$$

So, $A-C-B$.
Case 2: Suppose $f(B)<f(P)<f(A)$
Since $P-C-Q$ we have either

$$
\begin{align*}
& \text { ace } P-C-Q \text { we have either } \tag{2}\\
& \underbrace{f(P)<f(c)<f(Q)}_{(i)} \text { or } \underbrace{f(Q)<f(c)<f(P)}_{(\ddot{i})}
\end{align*}
$$

If (i), then

$$
f(B)<f(P)<f(C)<f(Q)<f(B)
$$

This is a contradiction, so this case can't happen.
If ($\ddot{u})$, then

$$
\begin{aligned}
& (\text { ii) then } \\
& f(A)<f(Q)<f(B)<f(P)<f(A)
\end{aligned}
$$

This is a contradiction, so this care can't happen.
\qquad

(10) Let $A, B, C \in \mathbb{R}^{2}$ be distinct points.
\Leftrightarrow Suppose $A-B-C$.
Then, A, B, C all lie on $l=\overleftrightarrow{A B}=\overleftrightarrow{A C}=\overrightarrow{B C}$
Since $B \in l=\overleftrightarrow{A C}$ and $\overleftrightarrow{A C}=L_{A C}$ we $A B C l$ know that $B=A+t(C-A)$ where $t \in \mathbb{R}$.

Goal:
We must show that $0<t<1$
If we can do this then we have proven the (Δ) direction of this proof

Let $A=\left(x_{a}, y_{a}\right), B=\left(x_{b}, y_{b}\right)$ and $C=\left(x_{c}, y_{c}\right)$.
Then, $B=A+t(C-A)$ becomes

$$
\begin{aligned}
& \text { Then, } B=A+t(c)=\underbrace{\left(x_{b}, y_{b}\right)}_{A+t(c-A)}=x_{a}^{\left(x_{a}+t x_{c}-t x_{a}, y_{a}+t y_{c}-t y_{a}\right)}
\end{aligned}
$$

We now break the proof into two cases: if l is a vertical line and if l is a non-vertical line.

Case 1: Suppose $l=L_{d}$ is a vertical line. Let $f: \ell \rightarrow \mathbb{R}$ be the standard ruler given by $f(x, y)=y$.

Apply the ruler f to (x) abuse to get

$$
y_{b}=y_{a}+t y_{c}-t y_{a}
$$

So,

$$
y_{b}-y_{a}=t\left(y_{c}-y_{a}\right)(t *)
$$

Since $A-B-C$ we know that either
(i) $f(A)<f(B)<f(C)$
$O R \quad(\ddot{\mu}) f(c)<f(B)<f(A)$
vertical line pic
Thus either
(i) $y_{a}<y_{b}<y_{c}$
or (ii) $y_{c}<y_{b}<y_{a}$

case (i): Suppose we have (i).
That is, suppose $y_{a}<y_{b}<y_{c}$.
Then, $0<y_{b}-y_{a}$ and $0<y_{c}-y_{a}$.
In $(* *)$ we have $\underbrace{y_{b}-y_{a}}_{>0}=t \underbrace{\left(y_{c}-y_{a}\right)}_{>0}$
So we must have $t>0$.
Why cant $t \geqslant 1$?

Suppose $t \geqslant 1$.
Then from $(*)$ we get

$$
y_{b}-y_{a}=t\left(y_{c}-y_{a}\right) \geqslant y_{c}-y_{a}
$$

But then $y_{b} \geqslant y_{c}$.
This contradicts $y_{b}<y_{c}$ from (i).
Therefore $0<t<1$ and we che done, with this case
case (ii): Suppose (ii), that is, $y_{c}<y_{b}<y_{a}$.
Then, $0<y_{a}-y_{c}$ and $0<y_{a}-y_{b}$.
So, $y_{c}-y_{a}<0$ and $y_{b}-y_{a}<0$.
Thus we have from (*) $\underbrace{\left(y_{b}-y_{a}\right)}_{<0}=t \underbrace{\left(y_{c}-y_{a}\right)}_{<0}$
So, $t>0$.
Why can't we have $t \geqslant 1$? Suppose $t \geqslant 1$.

Then $\frac{1}{t} \leq 1$ and $\frac{1}{t}\left(y_{b}-y_{a}\right)=\left(y_{c}-y_{a}\right)$
Thus, $\frac{1}{t}\left(y_{a}-y_{b}\right)=y_{a}-y_{c}$.
Then, $y_{a}-y_{c}=\underbrace{\frac{1}{t}}_{\leqslant 1}\left(y_{a}-y_{b}\right) \leqslant y_{a}-y_{b}$.
So, $-y_{c} \leq-y_{b}$
Then $y_{c} \geqslant y_{b}$.
But this contradicts $y_{c}<y_{b}$ from (ii) Therefore, $t \geqslant 1 \mathrm{can}^{\prime}+$ be true and thus $o<t<1$.
This completes the proof of casel.
case 2: Suppose $l=L_{m, c}$ is a non-vertical line.
Let $f: l \rightarrow \mathbb{R}$ be the stand and ruler.
Then, $f(x, y)=x \sqrt{1+m^{2}}=x M$ where $M=\sqrt{1+m^{2}}$
Recall that ($*$) says that

$$
\begin{aligned}
& \text { Recall that (*) says that } \\
& \left(x_{b}, y_{b}\right)=\left(x_{a}+t x_{c}-t x_{a}, y_{a}+t y_{c}-t y_{a}\right)
\end{aligned}
$$

Applying f to the above equ gives:

$$
M x_{b}=M\left(x_{a}+t x_{c}-t x_{a}\right)
$$

Cancelling M and subtracting x_{a} gives

$$
x_{b}-x_{a}=t\left(x_{c}-x_{a}\right)
$$

Since $A-B-C$ we know that either

$$
(i) f(A)<f(B)<f(C)
$$

$$
O R(\ddot{i}) f(c)<F(B)<F(A)
$$

That is, either
(i) $M x_{a}<M x_{b}<M x_{c}$
or (ii) $M x_{c}<M x_{b}<M x_{a}$
Since $M>0$ this becomes either

$$
\begin{aligned}
& \operatorname{since} x_{a}<x_{b}<x_{c} \\
& \text { or (ii) } x_{c}<x_{b}<x_{a}
\end{aligned}
$$

case (i): Suppose we have (i).
Then $x_{b}-x_{a}>0$ and $x_{c}-x_{a}>0$.
Thus, from $(* * *) \underbrace{x_{b}-x_{a}}_{>0}=t \underbrace{\left(x_{c}-x_{a}\right)}_{>0}$
we must have $t>0$.
We cant have $t \geqslant 1$ because if we did then we would get

$$
\begin{aligned}
& \text { did then } \\
& x_{b}-x_{a}=t\left(x_{c}-x_{a}\right) \geqslant x_{c}-x_{a} \\
& x_{1} \geqslant x_{c} \quad w h
\end{aligned}
$$

which would give $x_{b} \geqslant x_{c}$ which isn't true by (i).
Thus, $0<t<1$. Sn we are done with this case.
Case (ii): Suppose we have case (ii)
Then, $x_{a}-x_{c}>0$ and $x_{a}-x_{b}>0$.
So, $x_{c}-x_{a}<0$ and $x_{b}-x_{a}<0$.
Thus, from $(* * k)$

$$
\underbrace{x_{b}-x_{a}}_{<0}=t \underbrace{\left(x_{c}-x_{a}\right)}_{<0})
$$

we must have $t>0$.
Let's show $t<1$.
Suppose $t \geqslant 1$.
Then, $\frac{1}{t} \leq 1$ and $\frac{1}{t}\left(x_{b}-x_{a}\right)=\left(x_{c}-x_{a}\right)$
So, $\frac{1}{t}\left(x_{a}-x_{b}\right)=x_{a}-x_{c}$.
Then, $x_{a}-x_{c}=\frac{1}{t}\left(x_{a}-x_{b}\right) \leqslant x_{a}-x_{b}$

$$
\text { So, }-x_{c} \leq-x_{b} \text {. }
$$

And then $X_{c} \geqslant X_{b}$.
This contradicts $X_{c}<X_{b}$ from case (ii)
Thus, $t<1$ and so $0<t<1$ and we aredone with this case.

This concludes the proof of case 2 .
Thus we have proven (\vec{v}) since there are only two causes.
$\left(\left\langle\frac{\langle }{}\left(\frac{1}{}\right)\right.\right.$ Let A, B, C be distinct points where $B=A+t(C-A)$ with $0<t<1$.
This implies that $B \in L_{A C}=\overleftrightarrow{A C}$.
So, A, B, C are collinear.
Let $l=L_{A C}$.
Goal: We must show that $A-B-C$.
Let $A=\left(x_{c}, y_{a}\right), B=\left(x_{b}, y_{b}\right)$, and $C=\left(x_{c}, y_{c}\right)$.
Then $B=A+t(C-A)$ becomes

$$
\underbrace{\left(x_{b}, y_{b}\right)}_{B}=\underbrace{\left(x_{a}+t x_{c}-t x_{a}, y_{a}+t y_{c}-t y_{a}\right)}_{A+t(c-A)}
$$

We now break the proof int two cases: when l is vertical and when l is non-vertical.
case 1: Suppose $\ell=L_{d}$ is a vertical line
Recall that the stundand ruler on l is $f: \ell \rightarrow \mathbb{R}$ given by $f(x, y)=y$.
Apply f to (Δ) above we get

$$
y_{b}=y_{a}+t y_{c}-t y_{a} .
$$

So, $\left(y_{b}-y_{a}\right)=t\left(y_{c}-y_{a}\right)$ where $0<t<1$.
Since $A \neq B$ and both points lie on the vertical line ℓ we know $y_{b} \neq y_{a}$.
Thus, either $y_{b}-y_{a}<0$ or $y_{b}-y_{a}>0$.
case (i) Suppose $y_{b}-y_{a}<0$
Then from $(\Delta \Delta)$ since we have

$$
\left(y_{b}-y_{a}\right)=t\left(y_{c}-y_{a}\right)
$$

we must have $y_{c}-y_{a}<0$.

Thus, since $y_{b}-y_{a}<0$ and $y_{c}-y_{a}<0$
we have $y_{b}<y_{a}$ and $y_{c}<y_{a}$.
We want to show that $y_{c}<y_{b}$.
Suppose instead that $y_{b} \leq y_{c}$.
Since $0<t<1$ we know $1<\frac{1}{t}$.
So, then $\frac{1}{t}\left(y_{b}-y_{a}\right)=y_{c}-y_{a}$ from above and we get $\frac{1}{t}\left(y_{a}-y_{b}\right)=y_{a}-y_{c} \cdot\left(\begin{array}{ll}\text { by mut. } \\ \text { by } & -1\end{array}\right)$
Then

$$
y_{a}-y_{c}=\frac{1}{t}\left(y_{a}-y_{b}\right)>y_{a}-y_{b} \geqslant y_{a}-y_{c}
$$

$$
\begin{aligned}
& y_{b} \leq y_{c} \\
& \text { implies } \\
& -y_{b} \geqslant-y_{c}
\end{aligned}
$$

But then $y_{a}-y_{c}>y_{a}-y_{c}$, which is a contradiction. Thus we must have $y_{c}<y_{b}$.
Summarizing the above we get $y_{c}<y_{b}<y_{a}$.
Thus, $f(C)<f(B)<f(A)$ and so $C-B-A$.
Since $C-B-A$ we have $A-B-C$.

Case $(\ddot{\mu}):$ Suppose $y_{b}-y_{a}>0$.
Then from $(\Delta \Delta)$ since we have

$$
\left(y_{b}-y_{a}\right)=t\left(y_{c}-y_{a}\right)
$$

we must have $y_{c}-y_{a}>0$
Thus, $y_{b}-y_{a}>0$ and $y_{c}-y_{a}>0$.
So, $y_{b}>y_{a}$ and $y_{c}>y_{a}$
We want to show that $y_{c}>y_{b}$.
Suppose otherwise that $y_{c} \leq y_{b}$. since $y_{c}-y_{a} \leq y_{b}-y_{a}$
Then,

$$
\begin{aligned}
y_{b}-y_{a}=t\left(y_{c}-y_{a}\right) & \leq t\left(y_{b}-y_{a}\right) \\
& <\left(y_{b}-y_{a}\right)
\end{aligned}
$$

This gives $y_{b}-y_{a}<y_{b}-y_{a}$ which is a contradiction.
Thus, $y_{c}>y_{b}$.
So we get $y_{a}<y_{b}<y_{c}$.
So, $f(A)<f(B)<f(C)$
Thus $A-B-C$, This concludes case.
case 2: Suppose $l=L_{c, m}$ is a non-vectical line.
Let $f: l \rightarrow \mathbb{R}$ be the standard ruler
Where $f(x, y)=M x$ where $M=\sqrt{1+m^{2}}>0$.
Recall that (Δ) says that

$$
\left(x_{b}, y_{b}\right)=\left(x_{a}+t x_{c}-t x_{a}, y_{a}+t y_{c}-t y_{a}\right)
$$

Applying f to (Δ) gives

$$
M x_{b}=M\left(x_{a}+t x_{c}-t x_{a}\right)
$$

Cancelling by M and subtracting X_{a} gives

$$
x_{b}-x_{a}=t\left(x_{c}-x_{a}\right)
$$

Since A and B are distinct and they lie on a nou-vertical line we know $x_{b} \neq x_{a}$ and so $x_{b}-x_{a} \neq 0$. We break the proof into two cases: $x_{b}-x_{a}<0$ and $x_{b}-x_{a}>0$.
case (i) Suppose $x_{b}-x_{a}<0$
Then from $(\Delta \Delta \Delta)$ since we have

$$
\underbrace{\left(x_{b}-x_{a}\right)}_{<0}=\underbrace{t}_{>0}\left(x_{c}-x_{a}\right)
$$

we must have $x_{c}-x_{a}<0$.
Thus, since $x_{b}-x_{a}<0$ and $x_{c}-x_{a}<0$
we have $x_{b}<x_{a}$ and $x_{c}<x_{a}$.
We want to show that $x_{c}<x_{b}$.
Suppose instead that $x_{b} \leq X_{c}$.
Since $0<t<1$ we know $1<\frac{1}{t}$.
So, then $\frac{1}{t}\left(x_{b}-x_{a}\right)=x_{c}-x_{a}$ from above and we get $\frac{1}{t}\left(X_{a}-X_{b}\right)=X_{a}-X_{c} \cdot\left(\begin{array}{cc}b y & \text { mut. } \\ b y & -1\end{array}\right)$
Then,

$$
x_{a}-x_{c}=\frac{1}{t}\left(x_{a}-x_{b}\right)>x_{a}-x_{b} \geqslant x_{a}-x_{c}
$$

$$
\begin{aligned}
& x_{b} \leq x_{c} \\
& \text { implies } \\
& -x_{b} \geqslant-x_{c}
\end{aligned}
$$

But then $X_{a}-X_{c}>X_{a}-X_{c}$, which is a contradiction. Thus we must have $X_{c}<X_{b}$.
Summarizing the above we get $X_{c}<X_{b}<X_{a}$.
Since $M=\sqrt{1+m^{2}}>0$ we get $M x_{c}<M x_{b}<M x_{a}$.
Thus, $f(c)<f(B)<f(A)$ and so $C-B-A$.
Since $C-B-A$ we have $A-B-C$.
Case (ii): Suppose $X_{b}-x_{a}>0$.
Then from $(\Delta \Delta \Delta)$ since we have

$$
\left(x_{b}-x_{a}\right)=t\left(x_{c}-x_{a}\right)
$$

we must have $X_{c}-X_{a}>0$
Thus, $X_{b}-X_{a}>0$ and $X_{c}-X_{a}>0$.
So, $X_{b}>X_{a}$ and $X_{c}>X_{a}$
We want to show that $X_{c}>X_{b}$.
Suppore otherwise that $X_{c} \leqslant X_{b}$.

$$
\begin{aligned}
& h c n \\
& x_{b}-x_{a}=t\left(x_{c}-x_{a}\right) \leq t\left(x_{b}-x_{a}\right) \\
&<\left(x_{b}-x_{a}\right)
\end{aligned}
$$

This gives $x_{b}-x_{a}<x_{b}-x_{a}$ which is a contradiction.
Thus, $x_{c}>x_{b}$.
So we get $X_{a}<X_{b}<X_{c}$
Since $M=\sqrt{1+m^{2}}>0$ this gives $M x_{a}<M x_{b}<M x_{c}$
So, $f(A)<f(B)<f(C)$
Thus $A-B-C$.
This concludes case 2 .
Thus, by cases) and 2 we always get $A-B-C$.
So we have proven (β).

